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Abstract 
Following work done by a paper exploring the evolution and impact of antimalarial drug resistance, two                
computer simulations were developed using NetLogo. Both models proved the hypotheses set out from              
the original paper (Christian Nsanzabana, et al, 2010). The systems demonstrated emergent properties that              
confirmed the results put forth by the source paper. Model findings support the qualitative results of the                 
source paper in suggesting that a link exists between the application of antimalarial treatments and the                
increasing resistance of malaria. 
 
1. Background 
1.1. Source Paper 

The work carried out by the team in this paper is based on the source paper “Quantifying the Evolution                   
and Impact of Antimalarial Drug Resistance: Drug Use, Spread of Resistance, and Drug Failure over a                
12-Year Period in Papua New Guinea” (Christian Nsanzabana, et al, 2010). 
 
In addition to the paper put forth by Christian Nsanzabana, et al (2010), the work displayed in this report                   
was also informed by papers from Jan Engelstädter (2017), Anabela Simões , Ernesto Costa (2000), Klein                
E.Y (2013) and White N.J (2004). 
 
The source paper was produced based on work conducted as part of the “Malaria Vaccine Epidemiology                
and Evolution project”, which studied residents within the catchment area of the Kunjingimi health centre               
in the East Sepik Province of Papua New Guinea between the years of 1991 and 2002. 
 
Within this province, the Kunjingimi health centre was the sole provider of healthcare, effectively              
creating a closed population ideal for study. During the study period, data pertaining to the diagnosis and                 
treatment of malaria from patients visiting the health centre was collected. 
 
From the clinical records, molecular analysis of blood samples, and surveillance carried out by the               
research team, the paper identified three key components that lead to failure of the antimalarial drug: 
 

1. “A high level of antimalarial drug use within the community, creating the driving force for               
resistant mutations.” 
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2. “The spread and propagation of resistant mutations within a population due to evolutionary             
pressure.” 

3. “Failure of the Antimalarial drugs to treat subjects due to the increased resistance possessed by               
Malaria against Antimalarial drugs.” 

 
The paper investigated the relationship between the three factors in order to quantify the impact of drug                 
usage in driving mutations within the case study area of Papua New Guinea. This paper focuses on                 
modelling evolutionary resistance growth through allele and haplotype frequencies rather than analysing            
patient bloods to discover the mutation prevalence. The study revealed that treatment failure rates within               
the case study multiplied by 3.5 times between the years 1996 to 2000, but then decreased after a drug                   
policy change in the area. 
 
Though the paper does not explicitly state it as an outcome of the investigation; it suggests a link exists                   
between the the Kunjingimi health centre staff’s liberal application of antimalarial drugs to any patient               
that exhibits fever symptoms, and the strength of the resistance of the malaria against antimalarial               
treatments. The paper also states that despite the introduction of drug application policy changes and the                
introduction of a revised drug being capable of drastically reducing treatment failure rates, they still               
observed a rapid increase in the number of resistance markers and clinical failures. 
 
1.2. This Paper 

Based on the work by Christian Nsanzabana, et al, (2010), the team decided to investigate the effects of                  
repeated treatment cycles in which new strains of the antimalarial treatment were administered to an               
populus infected with malaria, similar to that witnessed in the Papua New Guinea case study. To gather                 
the data for this investigation, the team decided to build an agent based computer model using the                 
NetLogo environment. 
 
For the malaria model, the team worked to test the following hypotheses: “The effectiveness of               
antimalarial treatment against malaria will decrease with time as the malaria becomes resistant”, and              
“Each subsequent application of a new strain of antimalarial treatment will have a lower overall               
effectiveness than prior applications due to increased malaria resistance”. 
 
For the human model, the team worked to test the hypothesis that: “The frequency of application of new                  
strains of antimalarial treatments has little long term effect on the population of malaria within an                
ecosystem”. 
 
2. Method 
Two patch based NetLogo models were produced, both models utilise the same back end for managing                
the genetic mutation and reproduction algorithms, the antimalarial treatment success calculations, and the             
logging subsystem. One model (referred to as the malaria model) looks specifically at the malaria cells                
independently of other factors with each patch representing a malaria cell. The other model (referred to as                 
the Human model) looks at how the malaria interacts with a human population with each patch                
representing a human.  
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Both models implement a binary genome for their malaria cells and treatment. Each binary genome is a                 
randomly generated list of 32 bits. Lists where chosen to store the genome as in built NetLogo functions                  
allowed for easy comparison of different genomes, as can be seen by the following code snippet utilising                 
the ​map​ function.  
 

 
Figure 1 - The core code responsible for treating malaria 

 
The treatment of malaria is the same across both models and is considered effective when the genome of                  
the treatment is of a certain similarity to the genome of a cell. This similarity is set by a slider, that can be                       
adjusted at the GUI level of the model, named “treatment-effectiveness”. The similarity is arrived at by                
comparing each bit in the list of the malaria genome to the corresponding bit in the treatment genome and                   
noting if they match as shown in the diagram below.  
 

 
Figure 2 - Malaria Treatment Example 

 
Figure 2 displays the 32 bit binary genome of a malaria cell and the 32 bit binary genome of a treatment.                     
The 3rd row of the diagram indicates whether or not the malaria genome bit at that index matches the                   
corresponding bit from treatment genome, if the two values match, the 3rd row gets a T for true, if they do                     
not match the 3rd row gets an F for false. The number of Ts are then summed and compared to the value                      
held by the “treatment-effectiveness” slider. If the total number of Ts is higher than the value held by the                   
“treatment-effectiveness” slider then the cell is considered to be treated. 
 
2.1. Modeling Malaria Cell Genetic Mutation to Antimalarial Drugs 

The malaria focused model looks specifically at how the malaria cells behave when the human element of                 
the model is removed. The malaria model can be thought of as a petri dish with each patch representing a                    
malaria cell as can be seen in figure 3.  
 

 
Artificial Intelligence Applications, Teesside University 



3 

 
Figure 3 - NetLogo model in completed state 

 
Upon setup, each patch is given a randomly generated 32 bit genome and a random treatment is                 
generated. A new random treatment can be introduced at a certain number of ticks to further combat the                  
malaria. The model has completed running when the malaria cell count has reached the original               
population count. The model implements a state machine pattern based on the following state diagram: 
 

 
Figure 4 - Malaria State Machine Model 

 
Looking at figure 4, it can be seen that the start of a malaria cell life cycles begins in the “Junior” state.                      
The primary characteristics of a junior malaria cell are that it is infertile, meaning it cannot reproduce                 
until it has matured and transitioned into the “Senior” state. This life cycle model was based from                 
information put forward in a paper by Klein, E.Y (2013). An additional feature of this system allowed the                  
amount of malaria cells produced in a single tick to be counted, as without this state transition the new                   
malaria cells would reproduce in the same tick in which they were conceived, making it difficult to track                  
reproduction per tick. 
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Once a junior cell has been created a treatment is then applied to see if the cell will survive. The treatment                     
is not only applied to the cells in the Junior state it is applied to all alive malaria cells, as can be seen in                        
the state transition diagram following the Senior cell. The reasoning for this is that cells in the Senior state                   
may also be treated if the antimalarial treatment has been changed since it transitioned from the Junior                 
state. If the treatment is effective then the cell transitions into the Dead state as can be seen by the state                     
transition model. 
 
Once a cell has reached the Senior state it has gained the potential for reproduction. The reproductive                 
processes occurs when the cell is chosen to reproduce on the current tick. The way in which a cell is                    
chosen is tied to a slider on the GUI level of the model allowing the user to select a percentage value of                      
the alive cells to reproduce. If the cell has been randomly selected to reproduce, it will select one of it’s 8                     
neighbors, as shown in the diagram below. 
 

 
Figure 5 - Neighbor Selection 

 
In the scenario provided in figure 5, patch 5 represents an alive malaria cell in the Senior state that has                    
been chosen to reproduce. The first thing it must do is select a neighboring patch to reproduce to. The                   
neighboring patch must be in the Dead state in order to be selected for a new malaria cell to take its place,                      
this means that the selection of patches that can be picked are: patch 1, patch 2, patch 4, patch 6, patch 7,                      
patch 8 and patch 9. Patch 3 cannot be selected as it is currently occupied by an alive malaria cell in the                      
Junior state. Once a dead neighboring patch has been randomly selected, in this case patch 4 has been                  
selected, the cell that is reproducing (patch 5) runs its own binary genome through a mutation function                 
that outputs a new mutated genome that will be given to the randomly selected neighbor patch (patch 4).                  
Patch 4 will then transition into the Junior state and be assigned its new binary genome as can be seen by                     
the diagram. The diagram also demonstrates the transition of patch 3 starting at the Junior state on the left                   
and transitioning into the Senior state on the right. This process takes place over 1 tick.  
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Figure 6 - Grouping of Malaria cells from a NetLogo simulation 

 
Figure 6 demonstrates a property of the model in which the malaria cultures group together and grow.                 
This behavior is to be expected when taking into account the breeding methodology in which a senior                 
malaria cell can only reproduce to an empty space within the 8 neighboring cells.  
 
2.2. Modeling Malaria Spread Between Humans 

The human model was built to resemble malaria infection spread, its treatment and it is behavioural 
changes among the human population. The asexual reproduction and mutation methods used are identical 
to the previous model. Each patch in the NetLogo environment represents a human individual. Each 
human has values representing age and its health state. Health state is represented by an appropriate 
colour as can be seen by the following state machine diagram. 
 

 
Figure 7. Human state machine 
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Initially all patches start in healthy state - not being infected or treated from malaria. Individuals can die 
of natural causes after reaching a certain age represented by ticks. Individuals are infected with malaria at 
random by the “Infect” button on  the NetLogo GUI. After more individuals are infected malaria will start 
spreading through the population. Every infected individual is represented by a red colour and has an 
infection length meter. If the infection is not treated within a specified amount of time the individual dies, 
as evident in the source paper (Christian Nsanzabana, et al, 2010).  
 
An antimalarial treatment is applied per tick to the whole population. After a specified number of ticks, a 
new treatment is introduced to the system in order to combat the malaria strains that have become 
immune. The number of individuals it is possible to treat depends on the user defined treatment success 
rate, available to the user on the GUI level of the NetLogo model. The treatment pattern used is identical 
to the malaria cell model discussed above. 
 
After an individual dies, whether the cause is malaria or age, it is visually represented by marking the 
corresponding patch in black. After a specified amount of time a new healthy individual takes its place. 
The time taken before spawning a new human is modifiable but for keeping a consistent population model 
it is advised to keep the time at 1 tick.  
 
2.3. Modelling Breeding 

To accurately model asexual reproduction of malaria, research was conducted into the process by which a                
genome is mutated during reproduction. From this investigation, the team discovered a paper detailing the               
genetic algorithms used for transposition (Anabela Simões , Ernesto Costa 2000) in asexual reproduction              
in a binary genome. It was this mutation model the team decided to implement in their NetLogo model. 
 
However, due to strict time constraints and lack of experience and limitations of handling and               
manipulating large datasets with NetLogo, the team opted to design a simplified transposition algorithm              
whereby the the genome was simply reversed rather that fully pattern shifted. 
 

 
Artificial Intelligence Applications, Teesside University 



7 

 
Figure 8 - The final NetLogo procedure used to perform a mutation on a genome 

 
The procedure shown in figure 8 starts by selecting a random position within the binary genome as a                  
starting point, then calculates an endpoint using the ​“setLength” end bit. The procedure is designed               
to prevent out of bounds errors by calculating whether the endpoint is outside the genome length, and if so                   
limiting the endpoint to the maximum length of the genome. The procedure then reverses the bit order of                  
the selected partition to mutate the genome. This part of the procedure takes place within the loop                 
statement. 
 
2.4. Logging Model Results 

During development of the NetLogo models, the team decided it would be beneficial to have greater                
diagnostic utilities to debug model behaviour. To that extent, a model agnostic logging library was written                
to an .nls file that could be imported into the teams NetLogo projects. This allowed the same logging                  
behaviour to be used both in the human and malaria models. Below is the main procedure of the logging                   
library: 

 
Figure 9 - The core code of the logging library written for the human and malaria models 
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The above code snippet in figure 9 shows the function “​!logg-fwrite ​”. Note how the function               
accepts parameters for the current tick number of the execution and the name of the file to log to as well                     
as the dataset. The procedure also consumes an internally generated date-time, named in the code as                
“​logg-date ​” which is appended to the file name. 
 
Logging the tick number as part of the dataset printed to the file allowed the team to mitigate issues                   
arising from where the same file was written to multiple times per tick, such as when the logging function                   
was called from within an agent or patch each time certain interactions between agents took place. 
 
By accepting a name parameter, the logging library allows multiple log files to be written to for each run,                   
holding different diagnostic recording data from the execution and making the recoded data easier to               
traverse and understand. 
 
Later on in the projects cycle, after the models codebase was completed, the team made use of                 
BehaviourSearch: a component of the NetLogo ecosystem that allows many instances of the a model to be                 
ran in unison. The executable supports functionality to seed each model instance with different              
parameters, allowing for a range of inputs to be tested. This feature was used extensively by the team to                   
generate the statistical data used to produce the graphs used in the Results section of the report. 
 
3. Results 
Using the NetLogo Behavior Space functionality, the group was able to repeat the experiment multiple               
times using different input variables. This section of the paper looks at the results of both models, linking                  
back to the hypothesis of the original paper. 
 
3.1. Results From the Malaria Resistance Model 

Given certain variables for the malaria model, some interesting emergent properties can be seen,              
particularly when looking at the “treatment-effectiveness” input variable. The graphs shown below            
demonstrate the journey of results when the treatment-effectiveness slider is changed, starting at 50% and               
ending on 76%, (the percentage at which all malaria cells are instantly treated) with an increment of 2%                  
each run. In the context of the graph, a blue ​line represents the count of malaria cells in the Junior state,                     
the red line indicates the amount of malaria cells in the senior state and the grey ​​line represents the                   
number of dead malaria cells. The X-axis represents the time passed in ticks and the Y-axis represents the                  
count of malaria cells.  
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Figure 10 - Treatment Effectiveness Increasing per Run 

 
As the Treatment Effectiveness value increases, the grey peak showing how many malaria cells that have 
been treated grows. This peak continues to grow rapidly throughout the graphs until run number 8 where 
a second peak can be seen. This second peak marks the introduction of a new treatment which has been 
introduced every 20 ticks. It is at this point where the first emergent property can be seen; the peak for 
each subsequent treatment never exceeds the height of the previous peak (with exception of Run 10, 
discussed later in the document). This implies that with each new treatment introduced, the treatment 
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becomes less effective at killing the malaria cells until the treatment has little to no effect at all, thus the 
malaria has become resistant to treatment.  
 
Run number 10 looked particularly interesting as the malaria appeared to reach an equilibrium where the 
malaria population recovered by around the same amount that was killed each new treatment cycle. This 
system remains stable until the tipping point at the 100 tick mark where the last treatment was introduced. 
Even though this treatment killed off more malaria cells than the previous 3 treatments, (this can be seen 
by the larger than normal dip of the red line indicating the malaria population in the senior state), the 
malaria had mutated to a point where it could recover and regain the population of malaria cells to 100% 
before the next treatment is introduced. This is interesting because it demonstrates the emergent property 
that the malaria cell population has gained, where it has become increasingly resistant to the treatment 
with each subsequent treatment applied to the system.  
 
The original paper hypothesised that: “The effectiveness of antimalarial treatment against malaria will 
decrease with time as the malaria becomes resistant”. According to the results gathered from the malaria 
based model, it can be concluded that this is indeed the case, indicated by the following graph: 
 

 
Figure 11 - Treatment Effectiveness Decreasing Over Time 

 
As with the previous graphs, the blue line represents the count Junior cells, the red line indicates the count                   
of senior cells and the grey line represents the number of dead malaria cells. The sharp spike in the grey                    
line at tick number 2 indicates that the treatment has been introduced to the system and around 875                  
malaria cells have been affected by the treatment. The effectiveness of the treatment begins to decrease                
over time as is indicated by the fall of the grey line and the increase of the red line, indicating malaria                     
cells in the senior state. Looking at the previous results generated by the malaria model it can be seen that                    
they all follow the same pattern, indicating that the hypothesis of the source paper to be true.  
 
The second hypothesis set out to be tested by the malaria model was that: “Each subsequent application of                  
a new strain of antimalarial treatment will have a lower overall effectiveness than prior applications due                
to increased malaria resistance”. When looking at the results generated by the malaria model, it can be                 
concluded that this is indeed the case.  
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Figure 12 - Treatment Effectiveness Decreasing with Substiquent Treatments 

 
As indicated by the above graph, the first treatment is introduced at tick number 1 and is effective against 
around 1050 malaria cells in the system. The second treatment is introduced at 20 ticks at the effects can 
be seen with the spike at tick number 21-22. Although this treatment is effective against a number of 
malaria cells, the overall effectiveness is far less that that of the original treatment. This effect can be seen 
in the previous results where the subsequent treatment peaks generally do not exceed that of the previous 
peak. Due to the fact that the new treatment being introduced has an element of randomness, it can 
occasionally produce a significantly effective treatment that may match the previous treatment in 
effectiveness, causing some outliers for this rule. However the vast majority of tests follow this rule, 
indicating that the hypothesis of the original paper is correct. 
 
3.2. Results From the Human Malaria Transmission Model 

For each run of the human model approximately 8 to 20 randomly selected individuals were chosen to be                  
infected. In most cases similar results were observed. The malaria spread factor could either be set too                 
high or too low. If it was too high (6+) malaria quickly spread through the whole population leaving little                   
chance for the treatment to produce a significant effect. With the malaria spread factor set too low, quick                  
eradication of the the malaria was observed due to the high treatment effectiveness and repressed ability                
for the malaria to mutate. These results did not seem to resemble the real world population as described in                   
the case study. 
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Figure 13 - Infection isolation 
Based upon the team’s findings, the infection-spread and treatment-effectiveness factors were most            
physically accurate when capped around 6.3 to 6.7 and 5.1 to 5.5 respectively. Emergent properties were                
exhibited in test runs with a treatment strength higher than the value of 5.5, whereby the treated                 
population was isolated from the infected communities as represented by figure 13. This caused the               
malaria infection to be eradicated from the populus. 
 
 

 

 
Figure 14 - Human Testing Results 

 
The behavior represented by the graphs in figure 14 is similar to that of the ones shown in the malaria                    
model, it can be seen in figure 14 that the lines show a repeating increase in infected human population,                   
despite the introduction of new treatment cycles. However, the line profile of the graphs in figure 14 is                  
irregular and largely sporadic, suggesting the quality of results attained is questionable. The human model               
would largely benefit from implementing the 4-attribute based breeding. Due to the interplay of factors               
within the model, it is difficult to confirm the credibility of the results. 
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3.3. Analysis of results 

The general effectiveness of the models produced for testing the hypotheses under investigation was              
considered reasonably strong by the team. The malaria model generally exhibited the expected results,              
with the graphs showing a general downward trend in the effectiveness of a single application of                
antimalarial treatments at killing malaria cells. This supported the hypothesis of the original paper: “The               
effectiveness of antimalarial treatment against malaria will decrease with time as the malaria becomes              
resistant”. 
 
The second hypothesis being tested by the malaria model was also supported by the results gathered.                
“Each subsequent application of a new strain of antimalarial treatment will have a lower overall               
effectiveness than prior applications due to increased malaria resistance”. There was an exhibited decline              
in the overall effectiveness of subsequent applications of antimalarial drugs in conjunction to the malaria               
cells becoming generally more resistant to the treatments, regardless of their strain. 
 
The human model similarly supported the hypotheses put forth that: “The frequency of application of new                
strains of antimalarial treatments has little long term effect on the population of malaria within an                
ecosystem”. The trend represented by the results shows how unless the frequency of introduction of new                
antimalarial treatment strains was at a level beyond that which can be reasonably expected within the case                 
study scenario, new streams of antimalarial treatments have little long term effect on the population of                
malaria within the model. 
 
4. Evaluation and Conclusion 
Though a general trend is presented in the graphs produced from the malaria model, the team noted a                  
certain level of changeability in the results. Executing the same model with the same parameters has been                 
found to produce differentiated sets of results, with variations present within the models’ running time               
and the graphs’ profile. A certain level of unpredictability is expected as the starting conditions for the                 
model are randomised during the setup function. 
 
An additional potential flaw with both models lies within the matcher, which is the part of the model that                   
managed which treatment applications are successful by comparing the genome of the Malaia strain with               
that of the antimalarial drug. Due to the team being unable to replicate the breeding methodology put                 
forth by Anabela Simões and Ernesto Costa (2000) within the allotted time, the portions of code that                 
would have been responsible for representing an accurate breeding system within the model could not be                
used to handle accurate genome matching either. This meant the models had to fall back on a simple                  
similarity slider. Without an accurate method of dividing which treatment applications are effective, the              
overall quality of the results is lower than what would have been desired. 
 
The team has identified a number of changes they would have made to the projects had there been                  
additional time available. One such example is the breeding.nls file developed by the team which includes                
multiple methods for genome mutation. The original plan was for the team to implement the full model                 
put forth by Anabela Simões and Ernesto Costa (2000), however, due to time restrictions a suitable                
implementation was not able to be produced as mentioned in section 2.3 of this report. Instead, the team                  
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was able to implement function “​simple-swap-set-length-breed​” which produces a similar effect to            
the methodology represented in the aforementioned paper with reduced effect.  
 
The malaria model overall brought forth some interesting emergent properties and was a well rounded               
system that demonstrated the hypothesis put forward by the original source paper. However, one              
shortcoming of the malaria model and potential cause for some erratic results is the fact that the model                  
represents an entire drug cycle taking place within the space of only a few ticks; experimentation                
indicates that the best results from the model can be seen when provided with a 20 tick treatment cycle. It                    
is theorised that this is not enough time to allow the model to effectively represent an entire application                  
cycle of an antimalarial drug.  
 
The original study continued for 9 years before the first new treatment was introduced. This means that 1                  
tick in the model typically equates to 5.4 months in real time. It has been theorised by the team that                    
additional emergent properties would have been displayed had the time scale of the malaria model been                
increased. These changes would have also provided a greater resolution of data with which to work with                 
when producing the results section of this report and increasing the quality of graphs produced. 
 
Again, looking at the malaria model, the transition from a Junior cell to a Senior cell is met when the                    
junior cell has aged by 1 tick. A change that would improve this model would be to allow variation of the                     
age in which the cell can transition into a Senior state, instead of hard coding the value at 1. This would                     
allow for the possibility of delaying the transition into the Senior state thus delaying the reproduction                
process possibly leading to an emergent property in this area.  
 
The team found the logging library was useful not only for diagnosing entity behaviour within the                
NetLogo models, but also helped with production of the first graphs as the model was being developed.                 
However, because of the nature of BehaviourSpace, the logging library could not be used to generate the                 
statistical data the team needed to generate their statistical data as each parallel instance of the model                 
would try to write to the same log file. As BehaviourSpace supports its own data generation, it was later                   
discovered that this was not an issue. 
 
It can be concluded that the results of this paper support the hypotheses put forth by the source paper. The                    
results also conclude that the introduction of subsequent treatments is less effective when applied to a                
malaria culture that has become resistant to a previous treatment. This paper also concludes that the                
frequency of introduction of new treatments is largely ineffective at controlling the long term spread of                
malaria within a population. 
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